[tex]\large\underline{\sf{Solution-}}[/tex]
Given complex number is
[tex]\rm \longmapsto\:\dfrac{3 + 2i}{ - 2 + i} [/tex]
So, on rationalizing the denominator, we get
[tex]\rm \: = \: \dfrac{3 + 2i}{ - 2 + i} \times \dfrac{ - 2 - i}{ - 2 - i} [/tex]
[tex]\rm \: = \: \dfrac{ - 6 - 3i - 4i - {2i}^{2} }{ {( - 2)}^{2} - {i}^{2} } [/tex]
We know,
[tex] \rm \red\longmapsto\:\tt{ {i}^{2} \: = \: - \: 1 \: } \\ [/tex]
So, using this, we get
[tex]\rm \: = \: \dfrac{ - 6 - 7i - 2( - 1) }{ 4 - ( - 1)} [/tex]
[tex]\rm \: = \: \dfrac{ - 6 - 7i + 2}{ 4 + 1} [/tex]
[tex]\rm \: = \: \dfrac{ - 4 - 7i }{5} [/tex]
[tex]\rm \: = \: - \dfrac{4}{5} - \dfrac{7}{5} i[/tex]