Respuesta :
f(x) = (8-2x)2=y
let 's find the inverse is
(8-2x)2=y, (8-2x)=sqrt(y), and -2x=sqrt(y) -8, finally x= (-1/2)sqrt(y)+4
the inverse is f^-1(y)=(-1/2) √y + 4, when x=y
the inverse is f^-1(x)=(-1/2) √x + 4
A: f-1(x) = ;f-1 is a function
let 's find the inverse is
(8-2x)2=y, (8-2x)=sqrt(y), and -2x=sqrt(y) -8, finally x= (-1/2)sqrt(y)+4
the inverse is f^-1(y)=(-1/2) √y + 4, when x=y
the inverse is f^-1(x)=(-1/2) √x + 4
A: f-1(x) = ;f-1 is a function
Answer:
[tex]y=\frac{8\pm\sqrt{x}}{2}[/tex]
Explanation:
We have been given with a function [tex]f(x)=(8-2x)^2[/tex]
We need to find [tex]f^{-1}[/tex]
when we find inverse of any function we intechange the variables we will get
[tex]x=(8-2y)^2[/tex] after simplification we will get
[tex]y=\frac{8\pm\sqrt{x}}{2}[/tex]
[tex]f^{-1}[/tex] is not a function since, for each value of x there is two values of y.
