Respuesta :
Factory A sent 14 loads of rice to Store 1
Factory A sent no loads of rice to Store 2
Factory B sent 6 loads of rice to Store 1
Factory B sent 16 loads of rice to Store 2
Let
A1 = Loads sent from Factory A to Store 1
A2 = Loads sent from Factory A to Store 2
B1 = Loads sent from Factory B to Store 1
B2 = Loads sent from Factory B to Store 2
Then, the equations describing the scenario are;
[tex]A1+A2=14[/tex]
[tex]B1+B2=22[/tex]
[tex]A1+B1=20[/tex]
[tex]A2+B2=16[/tex]
[tex]200A1+350A2+300B1+250B2=8600[/tex]
The simultaneous equations can be expressed in matrix form thus:
[tex]\left[\begin{array}{ccccc}{A1}&{A2}&{B1}&{B2}&{}\\1&1&0&0&14\\0&0&1&1&22\\1&0&1&0&20\\0&1&0&1&16\\200&350&300&250&8600\end{array}\right][/tex]
Reducing the matrix:
Step 1:
[tex]R_3 \leftarrow R_3 - R_1\\R_5 \leftarrow R_5 - 200R_1[/tex]
[tex]\left[\begin{array}{ccccc}{A1}&{A2}&{B1}&{B2}&{}\\1&1&0&0&14\\0&0&1&1&22\\0&-1&1&0&6\\0&1&0&1&16\\0&150&300&250&5800\end{array}\right][/tex]
Step 2:
Switch [tex]R_4[/tex] and [tex]R_2[/tex]
[tex]\left[\begin{array}{ccccc}{A1}&{A2}&{B1}&{B2}&{}\\1&1&0&0&14\\0&1&0&1&16\\0&-1&1&0&6\\0&0&1&1&22\\0&150&300&250&5800\end{array}\right][/tex]
Step 3:
[tex]R_3\leftarrow R_3+R_2\\R_5 \leftarrow R_5-150R_2[/tex]
[tex]\left[\begin{array}{ccccc}{A1}&{A2}&{B1}&{B2}&{}\\1&1&0&0&14\\0&1&0&1&16\\0&0&1&1&22\\0&0&1&1&22\\0&0&300&100&3400\end{array}\right][/tex]
Step 4:
[tex]R_4\leftarrow R_4+R_3\\R_5 \leftarrow R_5-300R_3[/tex]
[tex]\left[\begin{array}{ccccc}{A1}&{A2}&{B1}&{B2}&{}\\1&1&0&0&14\\0&1&0&1&16\\0&0&1&1&22\\0&0&0&0&0\\0&0&0&-200&-3200\end{array}\right][/tex]
Step 5:
Switch [tex]R_4[/tex] and [tex]R_5[/tex]
[tex]R_4\leftarrow R_4 \times \frac{1}{-200}\\R_1 \leftarrow R_1-R_2[/tex]
[tex]\left[\begin{array}{ccccc}{A1}&{A2}&{B1}&{B2}&{}\\1&0&0&-1&-2\\0&1&0&1&16\\0&0&1&1&22\\0&0&0&1&16\\0&0&0&0&0\end{array}\right][/tex]
Step 6:
[tex]R_1 \leftarrow R_1 + R_4\\R_2\leftarrow R_2 - R_4\\R_3 \leftarrow R_3-R_4[/tex]
[tex]\left[\begin{array}{ccccc}{A1}&{A2}&{B1}&{B2}&{}\\1&0&0&0&14\\0&1&0&0&0\\0&0&1&0&6\\0&0&0&1&16\\0&0&0&0&0\end{array}\right][/tex]
So,
[tex]A1=14\\A2=0\\B1=6\\B2=16[/tex]
From the above calculations, we see that
Factory A sent 14 loads of rice to Store 1
Factory A sent no loads of rice to Store 2
Factory B sent 6 loads of rice to Store 1
Factory B sent 16 loads of rice to Store 2
Learn more about Matrix row operations: https://brainly.com/question/18546657