if a + b = 10 what is the value of 2(a + b) + a + b/6 + (a + b) ^ 2 - 2

Answer:
[tex]\frac{359}{3}[/tex] or [tex]119~\frac{2}{3}[/tex]
Step-by-step explanation:
Let [tex]x=a+b[/tex]. Then, the expression just reduces to [tex]2x+\frac{x}{6}+x^2-2[/tex].
But we know that [tex]a+b=x=10[/tex]!
Plugging in for [tex]x[/tex] gives [tex]2(10)+\frac{10}{6}+10^2-2=20+\frac{5}{3}+100-2=118+\frac{5}{3}=\frac{359}{3}[/tex].
So, the answer is [tex]\boxed{\frac{359}{3}}[/tex] and we're done!
Answer:
[tex]{ \rm{2(a + b) + \frac{a + b}{6} + {(a + b)}^{2} - 2}} \\ [/tex]
• substitute (a + b) with 10:
[tex] = { \tt{2(10) + \frac{10}{6} + {(10)}^{2} - 2 }} \\ \\ = { \tt{20 + \frac{10}{6} + 100 - 2}} \\ \\ { \boxed{ \tt{ = 119 \frac{2}{3} }}}[/tex]