[tex]\huge\bold\red{{HELP}}[/tex]

Answer:
x = 5/13
Step-by-step explanation:
Given [tex]x \frac{4}{x} - \frac{6}{4x} = \frac{1}{10}[/tex]:
First, cancel out the fraction of the first term:
[tex]x\frac{4}{x}[/tex] = 4
This leaves you with:
[tex]4 - \frac{6}{4x} = \frac{1}{10}[/tex]
Cancel out the common factor (of 2) from the second term, -6/4x:
[tex]4 - \frac{3}{2x} = \frac{1}{10}[/tex]
Next, we need to find the LCM of 2x and 10, which is 10x:
Multiply the terms by the LCM = 10x:
[tex](10x) 4 - \frac{3}{2x} (10x) = \frac{1}{10} (10x)[/tex]
Simplify:
40x - 15 = x
Subtract x from both sides:
40x - x - 15 = x - x
39x - 15 = 0
Add 15 to both sides:
39x - 15 + 15 = 15
39x = 15
Divide both sides by 39 to solve for x:
39x/39 = 15/39
x = 5/13
Please mark my answers as the Brainliest, if you find this helpful :)
Answer:
[tex]{ \rm{x \frac{4}{x} - \frac{6}{4x} = \frac{1}{10} }} \\ \\ { \rm{4 - \frac{6}{4x} = \frac{1}{10} }}[/tex]
• simplify further:
[tex]{ \rm{ \frac{6}{4x} = 4 - \frac{1}{10} }} \\ \\ { \rm{ \frac{6}{4x} = \frac{39}{10} }} \\ \\ { \rm{4x \times 39 = 6 \times 10}} \\ \\ { \rm{156x = 60}} \\ \\ { \boxed{ \rm{ \: \: x = \frac{5}{13} \: \: }}}[/tex]