Respuesta :
For the answer to the question above, If cos Θ = square root 2 over 2 and 3 pi over 2 < Θ < 2π, what are the values of sin Θ and tan Θ?
If 3 pi over 2 < Θ < 2π Then the signs of sinx and tanx are both negative.
cos(x) = sqrt(2)/2. So sin(x) = -sqrt(2)/2 and tan(x) = -1.
sin Θ = square root 2 over 2; tan Θ = −1
sin Θ = negative square root 2 over 2; tan Θ = 1
sin Θ = square root 2 over 2; tan Θ = negative square root 2
sin Θ = negative square root 2 over 2; tan Θ = −1
If 3 pi over 2 < Θ < 2π Then the signs of sinx and tanx are both negative.
cos(x) = sqrt(2)/2. So sin(x) = -sqrt(2)/2 and tan(x) = -1.
sin Θ = square root 2 over 2; tan Θ = −1
sin Θ = negative square root 2 over 2; tan Θ = 1
sin Θ = square root 2 over 2; tan Θ = negative square root 2
sin Θ = negative square root 2 over 2; tan Θ = −1
Answer:
The answer is
[tex]sin(\theta)=-\frac{\sqrt{2}}{2}[/tex]
[tex]tan(\theta)=-1[/tex]
Step-by-step explanation:
we know that
[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]
[tex]sin^{2}(\theta)+cos^{2}(\theta)=1[/tex]
In this problem we have
[tex]cos(\theta)=\frac{\sqrt{2}}{2}[/tex]
[tex]\frac{3\pi}{2} <\theta < 2\pi[/tex]
so
The angle [tex]\theta[/tex] belong to the third or fourth quadrant
The value of [tex]sin(\theta)[/tex] is negative
Step 1
Find the value of [tex]sin(\theta)[/tex]
Remember
[tex]sin^{2}(\theta)+cos^{2}(\theta)=1[/tex]
we have
[tex]cos(\theta)=\frac{\sqrt{2}}{2}[/tex]
substitute
[tex]sin^{2}(\theta)+(\frac{\sqrt{2}}{2})^{2}=1[/tex]
[tex]sin^{2}(\theta)=1-\frac{1}{2}[/tex]
[tex]sin^{2}(\theta)=\frac{1}{2}[/tex]
[tex]sin(\theta)=-\frac{\sqrt{2}}{2}[/tex] ------> remember that the value is negative
Step 2
Find the value of [tex]tan(\theta)[/tex]
[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]
we have
[tex]sin(\theta)=-\frac{\sqrt{2}}{2}[/tex]
[tex]cos(\theta)=\frac{\sqrt{2}}{2}[/tex]
substitute
[tex]tan(\theta)=\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}[/tex]
[tex]tan(\theta)=-1[/tex]
