Respuesta :

For the answer to the question above, If cos Θ = square root 2 over 2 and 3 pi over 2 < Θ < 2π, what are the values of sin Θ and tan Θ? 

If 3 pi over 2 < Θ < 2π Then the signs of sinx and tanx are both negative. 

cos(x) = sqrt(2)/2. So sin(x) = -sqrt(2)/2 and tan(x) = -1. 

sin Θ = square root 2 over 2; tan Θ = −1 

sin Θ = negative square root 2 over 2; tan Θ = 1 

sin Θ = square root 2 over 2; tan Θ = negative square root 2 

sin Θ = negative square root 2 over 2; tan Θ = −1

Answer:

The answer is

[tex]sin(\theta)=-\frac{\sqrt{2}}{2}[/tex]

[tex]tan(\theta)=-1[/tex]

Step-by-step explanation:

we know that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

[tex]sin^{2}(\theta)+cos^{2}(\theta)=1[/tex]

In this problem we have

[tex]cos(\theta)=\frac{\sqrt{2}}{2}[/tex]

[tex]\frac{3\pi}{2} <\theta < 2\pi[/tex]

so

The angle [tex]\theta[/tex] belong to the third or fourth quadrant

The value of [tex]sin(\theta)[/tex] is negative

Step 1

Find the value of  [tex]sin(\theta)[/tex]

Remember

[tex]sin^{2}(\theta)+cos^{2}(\theta)=1[/tex]

we have

[tex]cos(\theta)=\frac{\sqrt{2}}{2}[/tex]

substitute

[tex]sin^{2}(\theta)+(\frac{\sqrt{2}}{2})^{2}=1[/tex]

[tex]sin^{2}(\theta)=1-\frac{1}{2}[/tex]

[tex]sin^{2}(\theta)=\frac{1}{2}[/tex]

[tex]sin(\theta)=-\frac{\sqrt{2}}{2}[/tex] ------> remember that the value is negative

Step 2

Find the value of [tex]tan(\theta)[/tex]

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=-\frac{\sqrt{2}}{2}[/tex]

[tex]cos(\theta)=\frac{\sqrt{2}}{2}[/tex]

substitute

[tex]tan(\theta)=\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}[/tex]

[tex]tan(\theta)=-1[/tex]

RELAXING NOICE
Relax