6k^3+10k^2−56k and 5(7k−3)(3k−7)share a common binomial factor. What binomial factor do they share?

Respuesta :

Answer:

Step-by-step explanation:

[tex]6k^3+10k^2-56k\\2k(3k^2+5k-28)\\=2k[3k^2+12k-7k-28]\\=2k[3k(k+4)-7(k+4)]\\=2k(k+4)(3k-7)[/tex]

common factor is 3k-7