Respuesta :
Answer:
[tex]\displaystyle m = -18[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
Coordinate Planes
- Coordinates (x, y)
Slope Formula: [tex]\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
Point (34, 12)
Point (32, 48)
Step 2: Find slope m
Simply plug in the 2 coordinates into the slope formula to find slope m
- Substitute in points [Slope Formula]: [tex]\displaystyle m = \frac{48 - 12}{32 - 34}[/tex]
- Simplify: [tex]\displaystyle m = -18[/tex]
Answer:
The slope of the line is -18
Step-by-step explanation:
[tex]\textbf{Use Slope Formula:}[/tex] [tex]m=\frac{y_2-y_2}{x_2-x_1}[/tex]
m= slope
[tex]\textbf{points}: (34, 12)\:and\: (32, 48).[/tex]
Plugin the points into the formula:
[tex]m=\frac{48-12}{32-34}[/tex]
Subtract 48-12=36:
[tex]m=\frac{36}{32-34}[/tex]
Subtract 32-34=-2
[tex]m=\frac{36}{-2}[/tex]
Apply fraction rule: [tex]\frac{a}{-b}=-\frac{a}{b}[/tex]
[tex]m=-\frac{36}{2}[/tex]
Divide 36 ÷ 2 = 18
[tex]m=-18[/tex]