Respuesta :

Space

Answer:

[tex]\displaystyle m = -18[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Coordinate Planes

  • Coordinates (x, y)

Slope Formula: [tex]\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

Point (34, 12)

Point (32, 48)

Step 2: Find slope m

Simply plug in the 2 coordinates into the slope formula to find slope m

  1. Substitute in points [Slope Formula]:                                                              [tex]\displaystyle m = \frac{48 - 12}{32 - 34}[/tex]
  2. Simplify:                                                                                                             [tex]\displaystyle m = -18[/tex]

Answer:

The slope of the line is -18

Step-by-step explanation:

[tex]\textbf{Use Slope Formula:}[/tex] [tex]m=\frac{y_2-y_2}{x_2-x_1}[/tex]

m= slope

[tex]\textbf{points}: (34, 12)\:and\: (32, 48).[/tex]

Plugin the points into the formula:

[tex]m=\frac{48-12}{32-34}[/tex]

Subtract 48-12=36:

[tex]m=\frac{36}{32-34}[/tex]

Subtract 32-34=-2

[tex]m=\frac{36}{-2}[/tex]

Apply fraction rule: [tex]\frac{a}{-b}=-\frac{a}{b}[/tex]

[tex]m=-\frac{36}{2}[/tex]

Divide 36 ÷ 2 = 18

[tex]m=-18[/tex]