Answer:
The answer is the height h equals 9
Step-by-step explanation:
[tex]a = \frac{1}{2} bh = 58.5\\ b = h + 4[/tex]
[tex]58.5 = \frac{(h + 4)h}{2} = \frac{ {h}^{2} + 4h}{2} [/tex]
[tex]117 = {h}^{2} + 4h \\ {h}^{2} + 4h - 117 = 0[/tex]
[tex] x1 = - 2 + u \\ x2 = - 2 - u\\ x1x2 = ( - 2 + u)( - 2 - u) = - 117[/tex]
[tex]4 - {u}^{2} = - 117 \\ 4 + 117 = {u}^{2} \\ {u}^{2} = 121[/tex]
[tex] \sqrt{ {u}^{2} } = + or - \sqrt{121} \\ u = + or - 11[/tex]
[tex]x1 = - 2 + 11 = 9 \: or \\ x2 = - 2 - 11 = - 13[/tex]
since areas have to be positive -13 is incorrect therefore
[tex]h = 9[/tex]
Check:
[tex]58.5 = \frac{(h + 4)h}{2} = \frac{(9 + 4)9}{2} = \\ \frac{13 \times 9}{2} = \frac{117}{2} = 58.5[/tex]