Respuesta :
If the discriminant, b^2 — 4ac is positive (or > 0), then the solution will be two (2) distinct real solutions.
If the discriminant is positive ( > 0), there are 2 real solutions.
If the discriminant is = 0, there is 1 real repeated solution.
If the discriminant is negative (< 0), there are 2 complex solutions (but no real solutions).
If the discriminant is positive ( > 0), there are 2 real solutions.
If the discriminant is = 0, there is 1 real repeated solution.
If the discriminant is negative (< 0), there are 2 complex solutions (but no real solutions).
Answer:
Solutions have 2 real roots.
Step-by-step explanation:
Discriminant determines the solutions of quadratic equation.
If the value of discriminant is greater than 0 or D > 0 or D is positive then there are 2 real roots.
If the value of discriminant is 0, there is one real root.
If the value of discriminant is less than 0 or in negative then there are no real roots.
Formula
Discriminant can be found using:
[tex] \displaystyle \large{D = {b}^{2} - 4ac}[/tex]
The discriminant derives from Quadratic Formula.
[tex] \displaystyle \large{x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }[/tex]
Now you should know why D > 0 gives 2 real roots because of ± which determines 2 solutions.
D = 0 gives one real root because x would be -b/2a
D < 0 gives no real roots because in square root, the value is negative which does not exist in real number.