Respuesta :
An advertisement for an all-terrain vehicle (ATV) claims that the ATV can climb inclined slopes of 35°. The minimum coefficient of static friction needed for this claim to be possible is 0.7
In an inclined plane, the coefficient of static friction is the angle at which an object slide over another.
As the angle rises, the gravitational force component surpasses the static friction force, as such, the object begins to slide.
Using the Newton second law;
[tex]\sum F_x = \sum F_y = 0[/tex]
[tex]\mathbf{mg sin \theta -f_s= N-mgcos \theta = 0 }[/tex]
- So; On the L.H.S
[tex]\mathbf{mg sin \theta =f_s}[/tex]
[tex]\mathbf{mg sin \theta =\mu_s N}[/tex]
- On the R.H.S
N = mg cos θ
Equating both force component together, we have:
[tex]\mathbf{mg sin \theta =\mu_s \ mg \ cos \theta}[/tex]
[tex]\mathbf{sin \theta =\mu_s \ \ cos \theta}[/tex]
[tex]\mathbf{\mu_s = \dfrac{sin \theta }{ cos \theta}}[/tex]
From trigonometry rule:
[tex]\mathbf{tan \theta= \dfrac{sin \theta }{ cos \theta}}[/tex]
∴
[tex]\mathbf{\mu_s =\tan \theta}}[/tex]
[tex]\mathbf{\mu_s =\tan 35^0}}[/tex]
[tex]\mathbf{\mu_s = 0.700}}[/tex]
Therefore, we can conclude that the minimum coefficient of static friction needed for this claim to be possible is 0.7
Learn more about static friction here:
https://brainly.com/question/24882156?referrer=searchResults