Respuesta :

Answer:

y = -f(x): reflection over x axis

Step-by-step explanation:

y = -f(x): reflection over x axis

Ver imagen lynnkc2000

The equation for the graph of y = -f(x) is [tex]y = -|x + 2| +2[/tex] {x < 0}

The function of the graph is given as:

[tex]y = f(x)[/tex]

The equation of the graph is an absolute value function

An absolute value function is represented as:

[tex]y = a|x - h| + k[/tex]

Where:

[tex]Vertex = (h,k)[/tex]

From the graph, the vertex is at (-2,-2).

So [tex]y = a|x - h| + k[/tex] becomes

[tex]y = a|x + 2| -2[/tex]

A point on the graph is (-4,0).

So, we have:

[tex]0 = a|-4 + 2| -2[/tex]

Simplify

[tex]0 = a|-2| -2[/tex]

Add 2 to both sides

[tex]2 = a|-2|[/tex]

Remove absolute bracket

[tex]2 = 2a[/tex]

Divide both sides by 2

[tex]1 = a[/tex]

Rewrite as:

[tex]a = 1[/tex]

So, we have:

[tex]y = a|x + 2| -2[/tex]

[tex]y = |x + 2| -2[/tex]

The graph stops at x = 0.

So, the function of the graph is [tex]y = |x + 2| -2[/tex] {x < 0}

To draw the graph of y = -f(x), we simply transform f(x) as follows:

[tex](x,y) \to (x,-y)[/tex]

So, the equation for the graph of y = -f(x) is

[tex]y = -|x + 2| +2[/tex] {x < 0}

See attachment for the graph of y = -f(x)

Read more about absolute value functions at:

https://brainly.com/question/3381225

Ver imagen MrRoyal