Find the minimum or maximum value of the function g(x)=−3x2−6x+5
. Describe the domain and range of the function, and where the function is increasing and decreasing

Respuesta :

Step-by-step explanation:

g(x) = ax²+bx+c

g(x)=−3x²−6x+5

a = -3, b= -6, c = 5

since a <0 , the function has only maximum value.

=> g'(x) = 0

-6x -6 = 0

-6x = 6

x = -1

the maximum value => g(-1) =

-3(-1)²-6(-1)+5 = -3+6+5 = 9

the domain : {x | x € Real numbers}

the range : {y| y ≤ 9, y € Real numbers}

the function is increasing for x < -1

the function is decreasing for x > -1