In a particular Cartesian coordinate system, the y and z-components of the acceleration are zero and the x-component varies as given by the following function: ax(t) = 9t - 6t2 + 25e-t/F, where t is in seconds, ax is in meters per square second, and the constant F is in seconds. At t = 0, the particle was at position x = 7 m with a velocity pointing towards the positive x-axis and having magnitude 15 m/s. In the following problem you can take the constant F = 1.0 s.

Respuesta :

a) The velocities of the particle are [tex]v_{x}(1) \approx 33.303\,\frac{m}{s}[/tex], [tex]v_{x}(2) \approx 38.617\,\frac{m}{s}[/tex] and [tex]v_{x}(3) \approx 25.255\,\frac{m}{s}[/tex], respectively.

b) The accelerations of the particle are [tex]x(1) \approx 32.197\,m[/tex], [tex]x(2) \approx 69.383\,m[/tex] and [tex]x(3)\approx 103.245\,m[/tex], respectively.

Note - Statement is incomplete, complete description is presented below:

In a particular Cartesian coordinate system, the y and z-components of the acceleration are zero and the x-component varies as given by the following function: [tex]a_{x}(t) = 9\cdot t -6\cdot t^{2} + 25\cdot e^{-\frac{t}{F} }[/tex], where [tex]t[/tex] is in seconds, [tex]a_{x}[/tex] is in meters per square second, and the constant [tex]F[/tex] is in seconds. At [tex]t = 0[/tex], the particle was at position [tex]x = 7\,m[/tex] with a velocity pointing towards the positive x-axis and having magnitude [tex]15\,\frac{m}{s}[/tex]. In the following problem you can take the constant [tex]F = 1.0\,s[/tex].

(a) Find the instantaneous velocity, in meters per second, at [tex]t = 1\,s[/tex], and [tex]t = 2\,s[/tex], and [tex]t = 3\,s[/tex].

(b) Find the position, in meters, of the particle at [tex]t = 1\,s[/tex], [tex]t = 2\,s[/tex] and [tex]t = 3\,s[/tex].

The functions velocity and position of the particle are found by integration of the function acceleration in time. That is to say:

[tex]v_{x}(t) = \int {a_{x}(t)} \, dt[/tex]

[tex]v_{x}(t) = \int {(9\cdot t -6\cdot t^{2}+25\cdot e^{-\frac{t}{F} })} \, dt[/tex]

[tex]v_{x}(t) = 9\int {t} \, dt - 6\int {t^{2}} \, dt + 25\int {e^{-\frac{t}{F} }} \, dt[/tex]

[tex]v_{x}(t) = \frac{9}{2}\cdot t^{2}-2\cdot t^{3}-25\cdot F\cdot e^{-\frac{t}{F} } + C_{1}[/tex] (1)

[tex]x(t) = \int {v_{x}(t)} \, dt[/tex]

[tex]x(t) = \int {\left(\frac{9}{2}\cdot t^{2}-2\cdot t^{3} - 25\cdot F\cdot e^{-\frac{t}{F} } + C_{1} \right)} \, dt[/tex]

[tex]x(t) = \frac{9}{2}\int {t^{2}} \, dt - 2\int {t^{3}} \, dt -25\cdot F \int {e^{-\frac{t}{F} }} \, dt + C_{1} \int \, dt[/tex]

[tex]x(t) = \frac{3}{2}\cdot t^{3}-\frac{1}{2}\cdot t^{4}+25\cdot F^{2}\cdot e^{-\frac{t}{F}} + C_{1}\cdot t + C_{2}[/tex] (2)

Where [tex]C_{1}[/tex] and [tex]C_{2}[/tex] are integration constants.

If we know that [tex]t = 0\,s[/tex], [tex]F = 1\,s[/tex], [tex]v_{x} = 15\,\frac{m}{s}[/tex] and [tex]x = 7\,m[/tex], then the integration constants are, respectively:

[tex]C_{1} = 40[/tex], [tex]C_{2} = -18[/tex]

Now we evaluate each function at given instants:

a) Velocities:

(t = 1 s)

[tex]v_{x}(1) = \frac{9}{2}\cdot 1^{2}-2\cdot 1^{3}-25\cdot e^{-1} + 40[/tex]

[tex]v_{x}(1) \approx 33.303\,\frac{m}{s}[/tex]

(t = 2 s)

[tex]v_{x}(2) = \frac{9}{2}\cdot 2^{2}-2\cdot 2^{3}-25\cdot e^{-2} + 40[/tex]

[tex]v_{x}(2) \approx 38.617\,\frac{m}{s}[/tex]

(t = 3 s)

[tex]v_{x}(3) = \frac{9}{2}\cdot 3^{2}-2\cdot 3^{3}-25\cdot e^{-3} + 40[/tex]

[tex]v_{x}(3) \approx 25.255\,\frac{m}{s}[/tex]

b) Acceleration:

(t = 1 s)

[tex]x(1) = \frac{3}{2}\cdot 1^{3}-\frac{1}{2}\cdot 1^{4}+25\cdot e^{-1} + 40\cdot 1 - 18[/tex]

[tex]x(1) \approx 32.197\,m[/tex]

(t = 2 s)

[tex]x(2) = \frac{3}{2}\cdot 2^{3}-\frac{1}{2}\cdot 2^{4}+25\cdot e^{-2} + 40\cdot 2 - 18[/tex]

[tex]x(2) \approx 69.383\,m[/tex]

(t = 3 s)

[tex]x(3) = \frac{3}{2}\cdot 3^{3}-\frac{1}{2}\cdot 3^{4}+25\cdot e^{-3} + 40\cdot 3 - 18[/tex]

[tex]x(3)\approx 103.245\,m[/tex]

The velocities of the particle are [tex]v_{x}(1) \approx 33.303\,\frac{m}{s}[/tex], [tex]v_{x}(2) \approx 38.617\,\frac{m}{s}[/tex] and [tex]v_{x}(3) \approx 25.255\,\frac{m}{s}[/tex], respectively.

The accelerations of the particle are [tex]x(1) \approx 32.197\,m[/tex], [tex]x(2) \approx 69.383\,m[/tex] and [tex]x(3)\approx 103.245\,m[/tex], respectively.

We kindly invite to see this question on integrals: https://brainly.com/question/23567529

ACCESS MORE
EDU ACCESS