The question is an illustration of inverse functions.
The cube root function is: [tex]\mathbf{ x(C) = \sqrt[3]{C} }[/tex]
The question implies that the cost of the cube container is gotten from its volume.
So, the cost function is:
[tex]\mathbf{ C(x) = x^3}[/tex]
Next, we calculate the inverse function as follows:
[tex]\mathbf{ C(x) = x^3}[/tex]
Rewrite as:
[tex]\mathbf{ C = x^3}[/tex]
Take cube root of both sides
[tex]\mathbf{ \sqrt[3]{C} = \sqrt[3]{x^3}}[/tex]
[tex]\mathbf{ \sqrt[3]{C} = x}[/tex]
Make x the subject
[tex]\mathbf{ x = \sqrt[3]{C} }[/tex]
Express x as a function of C
[tex]\mathbf{ x(C) = \sqrt[3]{C} }[/tex]
Hence, the cube root function is:
[tex]\mathbf{ x(C) = \sqrt[3]{C} }[/tex]
Read more about inverse functions at:
https://brainly.com/question/10300045