With [tex]x = \tan^n(\theta)[/tex], we have
[tex]\dfrac{x+2}{2x+2} = \dfrac12\cdot\dfrac{x+2}{x+1} = \dfrac12\cdot \dfrac{x+1+1}{x+1} = \dfrac12 + \dfrac1{x+1}[/tex]
so [tex]\theta[/tex] belongs to some interval such that
[tex]\displaystyle\lim_{n\to\infty}\frac1{\tan^n(\theta)+1} = 0[/tex]
In order for this limit to be 0, the denominator must blow up as n gets arbitrarily large. This will happen if
[tex]\left|\tan^n(\theta)\right| = |\tan(\theta)|^n \ge 1 \implies |\tan(\theta)| \ge 1 \implies \theta \ge \dfrac\pi4[/tex]
(where [tex]|\tan(\theta)|=\tan(\theta)[/tex] since [tex]0\le\theta<\frac\pi2[/tex], over which [tex]\tan(\theta)\ge0[/tex])
So the interval over which the limit is 1/2 is
[tex]\dfrac\pi4 \le \theta < \dfrac\pi2[/tex]