Answer This question


Answer:
1)
a=3
2)
[tex]\dfrac{1}{27}[/tex]
Step-by-step explanation:
Use the property of exponent, [tex]a^m\cdot a^n=a^{m+n}[/tex]
[tex]\left(\dfrac{2}{3}\right)^{-3+8}=\left(\dfrac{2}{3}\right)^{2a-1}[/tex]
If [tex]a^m=a^n[/tex] then [tex]m=n[/tex]
[tex]-3+8=2a-1\\2a=5+1\\a=\frac{6}{2}\\a=3[/tex]
b)
[tex]$\dfrac{6^{4} \times 9^{-2} \times 25}{2^{4} \times 5^{2} \times 3^{3}}$=$\dfrac{(2\times3)^{4} \times 9^{-2} \times 5^2}{2^{4} \times 5^{2} \times 3^{3}}$\\=\dfrac{ 2^4\times 3^4\times 9^{-2} }{2^{4} \times 3^{3}}\\=\dfrac{ 3^4\times 9^{-2} }{3^{3}}[/tex]
Use the property of exponent, [tex]\dfrac{a^m}{a^n}=a^{m-n}[/tex]
[tex]=3^{4-3}\times 9^{-2}\\=3\times 9^{-2}[/tex]
Use the property of exponent, [tex]a^{-n}=\dfrac{1}{a^n}[/tex]
[tex]=3\times \dfrac{1}{9^2}\\=3\times \dfrac{1}{81}\\= \dfrac{1}{27}[/tex]