Least-squares regression is used to find the equation of best fit of a linear model
The equation of the least-squares regression line for predicting GPA from the number of absences is [tex]\mathbf{y = 3.71 - 0.16x}[/tex]
The given parameters are:
[tex]\mathbf{\bar x =5.0}[/tex]
[tex]\mathbf{s_x =1.2}[/tex]
[tex]\mathbf{\bar y=2.9}[/tex]
[tex]\mathbf{s_y=0.3}[/tex]
[tex]\mathbf{r =-0.65}[/tex]
The equation of the least-squares regression line is represented as:
[tex]\mathbf{y = a + bx}[/tex]
Where:
[tex]\mathbf{b = r \times (\frac{s_y}{s_x}) \ and\ a = \bar y - b \bar x}[/tex]
So, we have:
[tex]\mathbf{b = -0.65 \times (\frac{0.3}{1.2})}[/tex]
[tex]\mathbf{b = -0.1625}[/tex]
[tex]\mathbf{a = \bar y - b \bar x}[/tex]
[tex]\mathbf{a = 2.9 - (-0.1625) \times 5.0}[/tex]
[tex]\mathbf{a = 3.7125}[/tex]
Substitute values for a and b in [tex]\mathbf{y = a + bx}[/tex]
So, we have:
[tex]\mathbf{y = 3.7125 - 0.1625x}[/tex]
Approximate
[tex]\mathbf{y = 3.71 - 0.16x}[/tex]
Hence, the equation of the least-squares regression line for predicting GPA from the number of absences is [tex]\mathbf{y = 3.71 - 0.16x}[/tex]
Read more about least-squares regression at:
https://brainly.com/question/2141008