The fourth term in the expansion [tex]-108,864 x^5 y^3[/tex].
[tex](r+1)^th[/tex] term of a binomial expansion [tex](a+b)^n[/tex] is [tex]^n C_r a^{n-r} b^{r}[/tex]
[tex]4^{th}[/tex] term of a binomial expansion [tex](3x-2y)^8[/tex] is [tex]^8 C_3 (3x)^{8-3} (-2y)^{3}[/tex]
[tex]=56 (3x)^5 (-2y)^3[/tex]
[tex]=56 \times 243 x^5 \times -8y^3[/tex]
[tex]=-108,864 x^5 y^3[/tex]
The fourth term in the expansion [tex]-108,864 x^5 y^3[/tex].
The value of [tex]^n C_r[/tex] can also be found through Pascal's triangle.
Learn more about binomial expansion here:
https://brainly.com/question/15539827?referrer=searchResults