The equation of best fit is [tex]f(X) = 2.91964X + 265.86364[/tex].
[tex]f(65) = 455.64024[/tex]. It means that the population, in millions, after [tex]65[/tex] years from [tex]2000[/tex] is [tex]455.64024[/tex].
The slope of the line is [tex]2.91964[/tex] which means population is increasing at the rate of [tex]2.91964[/tex] per year.
Sum of [tex]X = 550[/tex]
Sum of [tex]Y = 4530.3[/tex]
Mean [tex]X = 50[/tex]
Mean [tex]Y = 411.8455[/tex]
Sum of squares (SSX) [tex]= 11000[/tex]
Sum of products (SP) [tex]= 32116[/tex]
Regression Equation [tex]= y = bX + a[/tex]
[tex]b = \frac{SP}{SSX} = \frac{32116}{11000} = 2.91964[/tex]
[tex]a = MY - bMX = 411.85 - (2.92*50) = 265.86364[/tex]
[tex]y = 2.91964X + 265.86364[/tex]
[tex]f(X) = 2.91964X + 265.86364[/tex]
[tex]f(65) = 2.91964\times 65 + 265.86364[/tex]
[tex]f(65) = 189.7766 + 265.86364[/tex]
[tex]f(65) = 189.7766 + 265.86364[/tex]
[tex]f(65) = 455.64024[/tex]
It means that the population, in millions, after [tex]65[/tex] years from [tex]2000[/tex] is [tex]455.64024[/tex].
From the equation, [tex]f(X) = 2.91964X + 265.86364[/tex]
the slope of the line is [tex]2.91964[/tex] which means population is increasing at the rate of [tex]2.91964[/tex] per year.
Learn more about line of best fit here:
https://brainly.com/question/14279419?referrer=searchResults