Respuesta :

26+(10-2³)/4+3•6
First indices(exponents)
26+(10-8)/4+3•6
Then solve the bracket
26+(2)/4+3•6
Division and multiplication occurs from left to right
26+0.5+18
Add them up to get 44.5

Answer:

[tex]\frac{89}{2}[/tex] or [tex]44 \frac{1}{2}[/tex]

Step-by-step explanation:

Given the problem, [tex]26 + (10 - 2^3)/4 + 3 * 6[/tex]

Follow the PEMDAS order of operations. Start by working on the terms inside the parenthesis: [tex]2^3 = 2*2*2 = 8[/tex]

= 26 + (10 - 8) ÷ 4 + 3 × 6

= 26 + (2) ÷ 4 + 3 × 6

Next, divide 2 by 4:  [tex]\frac{2}{4} = \frac{1}{2}[/tex]

= 26 + [tex]\frac{1}{2}[/tex] + 3 × 6

Multiply 3 and 6:

= 26 + [tex]\frac{1}{2}[/tex] + 18

Add 26 and  [tex]\frac{1}{2}[/tex] :

=  [tex]26 + \frac{1}{2} = \frac{26*2 + 1}{2} = \frac{53}{2}[/tex] + 18

Add  [tex]\frac{53}{2}[/tex] and 18. Convert 18 into fraction:

=  [tex]\frac{53}{2} + 18 = \frac{53}{2} + \frac{18*2}{2} = \frac{18*2+53}{2} = \frac{89}{2}[/tex]

[tex]\frac{89}{2}[/tex] = [tex]44 \frac{1}{2}[/tex] (convert [tex]\frac{89}{2}[/tex] by dividing 89 by 2 to get [tex]44 \frac{1}{2}[/tex]).

Therefore, the correct answer is  [tex]\frac{89}{2}[/tex]  or [tex]44 \frac{1}{2}[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico