Can anyone land a hand pls

Answer:
[tex]\frac{89}{2}[/tex] or [tex]44 \frac{1}{2}[/tex]
Step-by-step explanation:
Given the problem, [tex]26 + (10 - 2^3)/4 + 3 * 6[/tex]
Follow the PEMDAS order of operations. Start by working on the terms inside the parenthesis: [tex]2^3 = 2*2*2 = 8[/tex]
= 26 + (10 - 8) ÷ 4 + 3 × 6
= 26 + (2) ÷ 4 + 3 × 6
Next, divide 2 by 4: [tex]\frac{2}{4} = \frac{1}{2}[/tex]
= 26 + [tex]\frac{1}{2}[/tex] + 3 × 6
Multiply 3 and 6:
= 26 + [tex]\frac{1}{2}[/tex] + 18
Add 26 and [tex]\frac{1}{2}[/tex] :
= [tex]26 + \frac{1}{2} = \frac{26*2 + 1}{2} = \frac{53}{2}[/tex] + 18
Add [tex]\frac{53}{2}[/tex] and 18. Convert 18 into fraction:
= [tex]\frac{53}{2} + 18 = \frac{53}{2} + \frac{18*2}{2} = \frac{18*2+53}{2} = \frac{89}{2}[/tex]
[tex]\frac{89}{2}[/tex] = [tex]44 \frac{1}{2}[/tex] (convert [tex]\frac{89}{2}[/tex] by dividing 89 by 2 to get [tex]44 \frac{1}{2}[/tex]).
Therefore, the correct answer is [tex]\frac{89}{2}[/tex] or [tex]44 \frac{1}{2}[/tex].