Using Arithmetic progression, after [tex]29[/tex] weeks the balances of the loans to be the same.
Both the situations represent Arithmetic progression.
Case [tex]1[/tex]:
[tex]a=6500, d=-200[/tex].
nth term of an A.P is
[tex]a_n=a+(n-1)d[/tex]
[tex]a_n=6500+(n-1)(-200)...(i)[/tex]
Case [tex]2[/tex]:
[tex]a=1600, d=-25.[/tex]
nth term of an A.P is
[tex]a_n=a+(n-1)d[/tex]
[tex]a_n=1600+(n-1)(-25)...(ii)[/tex]
From [tex](i)[/tex] and[tex](ii)[/tex]
[tex]6500+(n-1)(-200)=1600+(n-1)(-25)[/tex]
[tex]6500-200n+200=1600-25n+25[/tex]
[tex]6500+200-1600-25=-25n+200n[/tex]
[tex]5075=175n[/tex]
[tex]n=29[/tex].
So, after [tex]29[/tex] weeks the balances of the loans to be the same.
Learn more about A.P here:
https://brainly.com/question/11972947?referrer=searchResults