The scientific notation is a way of representing numbers that are either too large, or too small.
The scientific notation of the population is: [tex]\mathbf{Population = 2.1 \times 10^7}[/tex]
The population is given as:
[tex]\mathbf{Population = 20612439}[/tex]
Multiply the population by 1
[tex]\mathbf{Population = 20612439 \times 1}[/tex]
Express 1 as[tex]\mathbf{\frac{10000000}{10000000}}[/tex]
So, we have:
[tex]\mathbf{Population = 20612439 \times \frac{10000000}{10000000}}[/tex]
Rewrite as:
[tex]\mathbf{Population = \frac{20612439}{10000000} \times 10000000}[/tex]
Divide
[tex]\mathbf{Population = 2.0612439 \times 10000000}[/tex]
Express 10000000 as an exponent of base 10
[tex]\mathbf{Population = 2.0612439 \times 10^7}[/tex]
Approximate the decimal to the nearest tenth
[tex]\mathbf{Population = 2.1 \times 10^7}[/tex]
Hence, the scientific notation of the population is:
[tex]\mathbf{Population = 2.1 \times 10^7}[/tex]
Read more about scientific notations and estimations at:
https://brainly.com/question/10667358