At terminal velocity [tex]v_t[/tex], the drag force has the same magnitude as the object's weight since the object is in equilibrium:
[tex]F_{\rm net} = F_{\rm drag} - mg = 0 \implies F_{\rm drag} = (30.0\,\mathrm{kg})\left(9.80\dfrac{\rm m}{\mathrm s^2}\right) = 294\,\mathrm N[/tex]
Drag is proportional to the square of the speed, so there is some constant k such that
[tex]F_{\rm drag} = kv^2[/tex]
and in particular, at terminal velocity we have
[tex]294\,\mathrm N = k{v_t}^2[/tex]
At the moment the object is falling with speed v = 70.0 m/s and with acceleration a = 4.00 m/s², the net force on it is
[tex]F_{\rm net}' = F_{\rm drag}' - mg = ma[/tex]
Solve for k :
[tex]k\left(70.0\dfrac{\rm m}{\mathrm s^2}\right) - (30.0\,\mathrm{kg})\left(9.80\dfrac{\rm m}{\mathrm s^2}\right) = (30.0\,\mathrm{kg})\left(-4.00\dfrac{\rm m}{\mathrm s^2}\right) \\\\ \implies k \approx 0.0355 \dfrac{\rm kg}{\rm m}[/tex]
Now solve for the terminal velocity:
[tex]294\,\mathrm N = \left(0.0355\dfrac{\rm kg}{\rm m}\right){v_t}^2 \implies \boxed{v_t \approx 91.0\dfrac{\rm m}{\rm s}}[/tex]