Respuesta :

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.

Below is the solution:

n(2x+y) = x +1 

Differentiate both sides, using the Chain Rule on the left side. 
(1 / (2x + y)) * d(2x + y)/dx = 1 
(1 / (2x + y)) * (2 + dy/dx) = 1 

Rearrange to isolate dy/dx. 

Answer:

[tex]\frac{dy}{dx} =\frac{1}{x}[/tex]

Step-by-step explanation:

Given:

[tex]ln(2xy)[/tex]

We need to find the derivate respect to x, so using the chain rule:

[tex]\frac{dy}{dx} (ln(2xy))=\frac{dln(u)}{du}\frac{du}{dx}[/tex]

where:

[tex]u=2xy[/tex]

and:

[tex]\frac{d}{du} log(u)=\frac{1}{u}[/tex]

so:

[tex]=\frac{d}{dx}(2xy)\frac{1}{2xy}=2y(\frac{d}{dx}x)\frac{1}{2xy} =\frac{2y}{2xy}[/tex]

Simplifying the expression

[tex]\frac{2y}{2xy}=\frac{1}{x}[/tex]

ACCESS MORE