The average velocity of a continuous function [tex]f(x)[/tex] over an interval [tex][a,b][/tex] is given by the difference quotient [tex]\dfrac{f(b)-f(a)}{b-a}[/tex].
So the average velocity for the object here would be [tex]\dfrac{s(1+h)-s(1)}{(1+h)-1}=\dfrac{\bigg(-7(1+h)^2+21(1+h)\bigg)-\bigg(-7+21\bigg)}{(1+h)-1}=\dfrac{-7h^2-13h+14}{h}=-7h-13+\dfrac{14}{h}[/tex]