Respuesta :

Answer:

[tex] \dashrightarrow \: { \tt{4x + 4 \leqslant 9x + 8}} \\ \\ \dashrightarrow \: { \tt{4x - 9x \leqslant 8 - 4}} \\ \\ \dashrightarrow \: { \tt{ - 5x \leqslant 4}}[/tex]

• divide either sides of the inequality by -5, also the sign will change:

[tex]\dashrightarrow \: { \tt{x \geqslant - \frac{4}{5} }} \\ [/tex]

Answer: x ≥ -4/5

Step-by-step explanation:

Step 1: Subtract 9x from both sides.

  • 4x + 4 - 9x ≤ 9x + 8 - 9x
  • -5x + 4 ≤ 8

Step 2: Subtract 4 from both sides.

  • -5x + 4 - 4 ≤ 8-4
  • -5x ≤ 4

Step 3: Divide both sides by -5 and flip the sign.

  • -5x/5 ≤ 4/(-5)
  • x ≥ -4/5

Therefore, the answer is x ≥ -4/5.

ACCESS MORE