Respuesta :

Answer:

[tex]\frac{-9x^{\frac{7}{4}}-1+34x^{\frac{31}{6}}}{2x^{\frac{1}{2}}}[/tex]

Step-by-step explanation:

first: we apply the sum-difference rule = [tex]\frac{d}{dx}\left(3x^{\frac{17}{3}}\right)-\frac{d}{dx}\left(2x^{\frac{9}{4}}\right)-\frac{d}{dx}\left(x^{\frac{1}{2}}\right)+\frac{d}{dx}\left(8\right)[/tex]

solve [tex]\frac{d}{dx}\left(3x^{\frac{17}{3}}\right)[/tex] = [tex](\frac{17}{3})(3^(\frac{17}{3}-1)[/tex] = [tex]17x^ \frac{14}{3}[/tex]

solve [tex]\frac{d}{dx}\left(2x^{\frac{9}{4}}\right)[/tex] = [tex](\frac{9}{4})(2x^\frac{9}{4}^-^1)[/tex] = [tex]\frac{9}{2}x^(\frac{5}{4})[/tex]

solve [tex]\frac{d}{dx}\left(x^{\frac{1}{2}}\right)[/tex] = [tex]\frac{1}{2\sqrt{x} }[/tex]

solve [tex]\frac{d}{dx}\left(8\right)[/tex] = 0

combine the answers: [tex]= 17x^{\frac{14}{3}}-\frac{9x^{\frac{5}{4}}}{2}-\frac{1}{2x^{\frac{1}{2}}}+0[/tex]

simplify: [tex]\frac{-9x^{\frac{7}{4}}-1+34x^{\frac{31}{6}}}{2x^{\frac{1}{2}}}[/tex]

ACCESS MORE
EDU ACCESS