Respuesta :

Happil

Solving for x and y given the angles that are in terms of x and y

Answer:

[tex]x = 16[/tex] and [tex]y = 20[/tex]

Step-by-step explanation:

Angles [tex](5x -16)^{\circ}[/tex] and [tex](6y -4)^{\circ}[/tex] are supplementary. this means they should add up to [tex]180^{\circ}[/tex]. we can write the equation: [tex](5x -16)^{\circ} +(6y -4)^{\circ} = 180^{\circ}[/tex]

Also, we can see that angles [tex](6y -4)^{\circ}[/tex] and [tex](7x +4)^{\circ}[/tex] are transversals. Transversal angles are equal. we can therefore write the equation: [tex](6y -4)^{\circ} = (7x +4)^{\circ}[/tex].

We now have the system of equations:

[tex]\begin{cases} (5x -16)^{\circ} +(6y -4)^{\circ} = 180^{\circ} \\ (6y -4)^{\circ} = (7x +4)^{\circ} \end{cases}[/tex]

Let's solve for [tex]y[/tex] in terms of [tex]x[/tex] in this equation, [tex](6y -4)^{\circ} = (7x +4)^{\circ}[/tex], first.

[tex](6y -4)^{\circ} = (7x +4)^{\circ} \\ 6y -4 = 7x +4 \\ 6y = 7x +4 +4 \\ 6y = 7x +8 \\ y = \frac{7x +8}{6}[/tex]

Now let's solve for the equation [tex](5x -16)^{\circ} +(6y -4)^{\circ} = 180^{\circ}[/tex] by plugging in [tex]y[/tex].

[tex](5x -16)^{\circ} +(6y -4)^{\circ} = 180^{\circ} \\ 5x -16 +6y -4 = 180 \\ 5x +6y -20 = 180 \\ 5x +6(\frac{7x +8}{6}) -20 = 180 \\ 5x +7x +8 -20 = 180 \\ 12x -12 = 180 \\ 12x = 180 +12 \\ 12x = 192 \\ x = \frac{192}{12} \\ x = 16[/tex].

Now let's just solve for the equation, [tex]y = \frac{7x +8}{6}\\[/tex], by plugging in the value of [tex]x[/tex].

[tex]y = \frac{7(16) +8}{6} \\ y = \frac{112 +8}{6} \\ y = \frac{120}{6} \\ y = 20[/tex]

ACCESS MORE