Use the given graph to determine the limit, if it exists, will give brainliest and many points

Answer:
[tex]$ \lim_{x \to 2^-} f(x) = 3$[/tex]
[tex]$ \lim_{x \to 2^+} f(x) = -1$[/tex]
Step-by-step explanation:
Here we have a piecewise function [tex]f[/tex] such that
[tex]\[ f(x) = \begin{cases} 3 & \text{if $x<2$} \\ 1 & \text{if $x=2$} \\ -1 & \text{if $x>2$} \\ \end{cases}\][/tex]
[tex]$ \lim_{x \to 2^-} f(x) $[/tex]
Here the function approaches [tex]3[/tex] as [tex]x \to 2^-[/tex], thus [tex]$ \lim_{x \to 2^-} f(x) = 3$[/tex]
[tex]$ \lim_{x \to 2^+} f(x) $[/tex]
Here the function approaches [tex]-1[/tex] as [tex]x \to 2^+[/tex], thus [tex]$ \lim_{x \to 2^+} f(x) = -1$[/tex]
========================================================