An absolute function is represented as: [tex]y = a|x - h| + k[/tex] where the vertex is (h,k).
The function that describes the path of the sunlight is: [tex]y= 2|x - 4|[/tex]
We have:
[tex](h,k) = (4,0)[/tex] --- the vertex i.e. the point where the sun hits the water
[tex](x,y) =(5.5,3)[/tex]
Recall that:
[tex]y = a|x - h| + k[/tex]
Substitute [tex](h,k) = (4,0)[/tex]
[tex]y = a|x - 4| + 0[/tex]
[tex]y = a|x - 4|[/tex]
Substitute [tex](x,y) =(5.5,3)[/tex] to solve for a
[tex]3 = a|5.5 - 4|[/tex]
[tex]3 = a|1.5|[/tex]
Take absolute value of 1.5
[tex]3 = 1.5a[/tex]
Solve for a
[tex]a = \frac 3{1.5}[/tex]
[tex]a = 2[/tex]
Recall that:
[tex]y = a|x - 4|[/tex]
Substitute [tex]a = 2[/tex]
[tex]y= 2|x - 4|[/tex]
Hence, the function that describes the path of the sunlight is: [tex]y= 2|x - 4|[/tex]
See attachment for the graph of [tex]y= 2|x - 4|[/tex]
Read more absolute functions at:
https://brainly.com/question/1389494