Respuesta :

the function is an identity

Answer:

see explanation

Step-by-step explanation:

Using the identities

1 + cot²x = cosec²x

cosec²x = [tex]\frac{1}{sin^2x}[/tex] , cotx = [tex]\frac{cosx}{sinx}[/tex]

Consider the left side

cos²A + cos²A cot²A ← factor out cos²A from each term

= cos²A(1 + cot²A)

= cos²A × cosec²A

= cos²A × [tex]\frac{1}{sin^2A}[/tex]

= [tex]\frac{cos^2A}{sin^2A}[/tex]

= cot²A

= right side , thus proven

ACCESS MORE