Theequation of circle with center at [tex]\left( { - 3,12} \right)[/tex] and radius [tex]5{\text{ units}}[/tex] is [tex]\boxed{{x^2} + {y^2} + 6x - 24y + 128 = 0}.[/tex]
Further explanation:
The standard equation of the circle with center [tex]\left( {h,k} \right)[/tex] and radius r can be expressed as,
[tex]{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}.[/tex]
Given:
A circle with center at [tex]\left( { - 3,12} \right).[/tex]
Radius of the circle is [tex]5{\text{ units}}.[/tex]
Explanation:
The center is at [tex]\left( { - 3,12}\right).[/tex]
Compare the general form [tex]\left( {h,k} \right)[/tex] of the center to the given center [tex]\left( { - 3,12} \right)[/tex] to obtain the value of [tex]h[/tex] and [tex]k[/tex].
Therefore, the value of [tex]h[/tex] and [tex]k[/tex] are [tex]-3[/tex] and [tex]12[/tex] respectively.
The radius of the circle is [tex]5{\text{ units}}.[/tex]
Substitute [tex]- 3[/tex] for [tex]h[/tex], [tex]12[/tex] for [tex]k[/tex] and [tex]5[/tex] for [tex]r[/tex] to obtain the standard equation of the circle.
[tex]\begin{aligned}{\left( {x - \left( { - 3} \right)} \right)^2} + {\left({y - 12} \right)^2}&= {\left( 5 \right)^2}\\{\left( {x + 3} \right)^2} + {\left( {y - 12}\right)^2} &= 25\\{x^2} + 6x + 9 + {y^2} - 24y + 144&= 25\\{x^2} + {y^2} + 6x - 24y + 153&= 25\\{x^2} + {y^2} + 6x - 24y + 153 - 25&= 0\\{x^2} + {y^2} + 6x - 24y + 128&= 0\\\end{aligned}[/tex]
The equation of circle with center at [tex]\left( { - 3,12}\right)[/tex] and radius [tex]5{\text{ units}}[/tex] is [tex]\boxed{{x^2} + {y^2} + 6x - 24y + 128 = 0}.[/tex]
Learn more:
1. Learn more about equation of circle brainly.com/question/1506955.
2. Learn more about domain of the function https://brainly.com/question/3852778.
3. Learn more about coplanar https://brainly.com/question/4165000.
Answer details:
Grade: Middle School
Subject: Mathematics
Chapter: Circle
Keywords: Circle, standard form of the circle, equation of the circle, center, diameter of circle, radius of the circle, center A.