Respuesta :
If we want to verify that g ( x ) is the inverse of f ( x ) we have to show that:
( f ° g ) = ( g ° f )
f ( g ( x ) )= 3 · ( 1/3 x ) = x
g ( f ( x ) ) = 1/3 · ( 3 x ) = x
Answer:
C ) 1/3 ( 3 x )
( f ° g ) = ( g ° f )
f ( g ( x ) )= 3 · ( 1/3 x ) = x
g ( f ( x ) ) = 1/3 · ( 3 x ) = x
Answer:
C ) 1/3 ( 3 x )
[tex]\fbox{Option C}[/tex] is correct as [tex]\dfrac{1}{3}\left( {3x} \right)[/tex] is equal to [tex]x[/tex] an it is equal to inverse [tex]x[/tex].
Further explanation:
A function that is a reverse of another function is known as an inverse function. If we substitute [tex]x[/tex] in a function [tex]f[/tex] and it gives a result of [tex]y[/tex] then its inverse [tex]z[/tex] to [tex]y[/tex] gives the result [tex]x[/tex].
Given:
The function [tex]f\left( x \right) = 3x[/tex] and [tex]g\left( x \right) = \dfrac{1}{3}x[/tex]
We have to verify that [tex]g\left( x \right)[/tex] is the inverse of [tex]f\left( x \right)[/tex].
To verify that [tex]g\left( x \right)[/tex] is the inverse of [tex]f\left( x \right)[/tex] we have to show that [tex]\left( {f \circ g} \right)\left( x \right) = \left( {g \circ f} \right)\left( x \right)[/tex].
First we have to find [tex]\left( {f \circ g} \right)\left( x \right)[/tex].
[tex]\left( {f \circ g}\right)\left( x \right)[/tex] can be obtained as,
[tex]\left( {f\circ g} \right)\left( x \right) = f\left( {g\left( x \right)} \right)[/tex].
Substitute [tex]\dfrac{1}{3}x[/tex] for [tex]g\left( x \right)[/tex] in above equation to obtain [tex]\left( {f \circ g} \right)\left( x \right)[/tex].
[tex]\begin{gathered}\left( {f \circ g}\right)\left( x \right) = f\left( {\frac{1}{3}x} \right) \\= 3\left( {\frac{1}{3}x}\right)\\=x\end{gathered}[/tex]
Now, we have to find [tex]\left( {g \circ f} \right)\left( x \right)[/tex].
[tex]\left( {g \circ f} \right)\left( x \right)[/tex] can be obtained as,
[tex]\left( {g \circ f} \right)\left( x \right) = g\left( {f\left( x \right)} \right)[/tex].
Substitute [tex]3x[/tex] for [tex]f\left(x\right)[/tex] in above equation to obtain [tex]\left( {g \circ f} \right)\left( x \right)[/tex].
[tex]\begin{gathered}\left( {g \circ f}\right)\left( x \right)= g\left( {3x} \right) \\=\frac{1}{3}\left( {3x}\right)\\=x \\ \end{gathered}[/tex]
Here, [tex]\left( {g \circ f} \right)\left( x \right)[/tex] is equal to [tex]x[/tex] and [tex]\left( {f \circ g} \right)\left( x \right)[/tex] is equal to [tex]x[/tex].
Option A is not correct as [tex]3x\left( {\dfrac{x}{3}} \right)[/tex] is equal to [tex]{x^2}[/tex] which is not equal to inverse [tex]x[/tex].
Option B is not correct as [tex]\left( {\dfrac{1}{3}x} \right)\left( {3x} \right)[/tex] is equal to [tex]{x^2}[/tex] which is not equal to inverse [tex]x[/tex].
[tex]\fbox{Option C}[/tex] is correct as [tex]\dfrac{1}{3}\left( {3x} \right)[/tex] is equal to [tex]x[/tex] an it is equal to inverse [tex]x[/tex].
Option D is not correct as [tex]\frac{1}{3}\left( {\frac{1}{3}x} \right)[/tex] is equal to [tex]\frac{1}{9}x[/tex] which is not equal to inverse [tex]x[/tex].
Learn more:
1. Learn more about functions https://brainly.com/question/2142762
2. Learn more about range of the functions https://brainly.com/question/3412497
3. Learn more about relation and function https://brainly.com/question/1691598
Answer details:
Grade: High school
Subject: Mathematics
Chapter: Functions
Keywords: functions, range, domain, inverse, reverse, fraction, relation, expression, [tex]\left( {g \circ f} \right)\left( x \right)[/tex], [tex]\left( {f \circ g} \right)\left( x \right)[/tex].