Respuesta :

Answer:

3[tex]\sqrt{2}[/tex]

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplify the given radicals

[tex]\sqrt{50}[/tex]

= [tex]\sqrt{25(2)}[/tex]

= [tex]\sqrt{25}[/tex] × [tex]\sqrt{2}[/tex]

= 5[tex]\sqrt{2}[/tex]

------------------------

[tex]\sqrt{72}[/tex]

= [tex]\sqrt{36(2)}[/tex]

= [tex]\sqrt{36}[/tex] × [tex]\sqrt{2}[/tex]

= 6[tex]\sqrt{2}[/tex]

-----------------------

[tex]\sqrt{128}[/tex]

= [tex]\sqrt{64(2)}[/tex]

= [tex]\sqrt{64}[/tex] × [tex]\sqrt{2}[/tex]

= 8[tex]\sqrt{2}[/tex]

Then

[tex]\sqrt{50}[/tex] + [tex]\sqrt{72}[/tex] - [tex]\sqrt{128}[/tex]

= 5[tex]\sqrt{2}[/tex] + 6[tex]\sqrt{2}[/tex] - 8[tex]\sqrt{2}[/tex]

= 11[tex]\sqrt{2}[/tex] - 8[tex]\sqrt{2}[/tex]

= 3[tex]\sqrt{2}[/tex]