Respuesta :
Answer:
[tex]\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = 9x^{10} \tan^{-1}(x)[/tex]
Step 2: Differentiate
- [Function] Derivative Rule [Product Rule]: [tex]\displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)][/tex]
- Basic Power Rule: [tex]\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)][/tex]
- Arctrig Derivative: [tex]\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation