Respuesta :

Step-by-step explanation:

[tex]4\sin{x} + 3\cos{x} = 4[/tex]

Move the sine term to the right hand side so it becomes

[tex]3\cos{x} = 4 - 4\sin{x}[/tex]

Now take the square of the equation to get

[tex]9\cos^2{x} = 16 - 32\sin{x} + 16\sin^2{x}[/tex]

Use the relation [tex]\cos^2{x} = 1 - \sin^2{x}[/tex] to get

[tex]9 - 9\sin^2{x} = 16 - 32\sin{x} + 16\sin^2{x}[/tex]

Collect all similar terms and we will get

[tex]25\sin^2{x} - 32\sin{x} + 7 = 0[/tex]

Let [tex]y = \sin{x}[/tex] so the above equation becomes

[tex]25y^2 - 32y + 7 = 0[/tex]

Using the quadratic equation, the roots of the above equation are

[tex]y = 1, \frac{7}{25}[/tex]

This means that

[tex] y = \sin{x} = 1 \Rightarrow x = 90°[/tex]

and

[tex]y = \sin{x} = \frac{7}{25} \Rightarrow x = 16.26°[/tex]