Respuesta :

Answer:

1

[tex]g(n) = 2 + {(n + 2)}^{3} [/tex]

let the inverse be m :

[tex]m = 2 + {(n + 2)}^{3} \\ {(n + 2)}^{3} = m - 2 \\ n + 2 = \sqrt[3]{(m - 2)} \\ n = \{ \sqrt[ 3]{(m - 2)} - 2 \}[/tex]

therefore:

[tex]{ \boxed{ \boxed{g {}^{ - 1}(n) = \{ \sqrt[3]{(n - 2)} - 2 \}}}}[/tex]

2.

[tex]f(n) = \frac{1}{2} n + \frac{3}{2} [/tex]

let inverse be x :

[tex]x = \frac{1}{2} n + \frac{3}{2} \\ \\ 2x = n + 3 \\ n = 2x - 3[/tex]

therefore:

[tex]{ \boxed{ \boxed{f {}^{ - 1}(n) = 2n - 3 }}}[/tex]