Respuesta :
Answer:
[tex]\displaystyle (f - g)(x) = -x^2 + 2x + 8[/tex]
Step-by-step explanation:
We are given the two functions:
[tex]\displaystyle f(x) = 2x + 1 \text{ and } g(x) = x^2 - 7[/tex]
And we want to find:
[tex]\displaystyle (f- g)(x)[/tex]
Recall that:
[tex]\displaystyle (f - g)(x) = f(x) - g(x)[/tex]
Substitute and simplify:
[tex]\displaystyle \begin{aligned}(f-g)(x) &= f(x) - g(x) \\ \\ &= (2x + 1) - (x^2 - 7) \\ \\ &= (2x +1 )+ (-x^2 + 7) \\ \\ &= -x^2 +2x + 8\end{aligned}[/tex]
In conclusion:
[tex]\displaystyle (f - g)(x) = -x^2 + 2x + 8[/tex]
Answer:
[tex]→(f - g)(x) \\ = f(x) - g(x) \\ = (2x + 1) - ( {x}^{2} - 7) \\ = 2x + 1 - {x}^{2} + 7 \\ = \boxed{ - {x}^{2} + 2x + 8}✓[/tex]
- -x²+2x+8 is the right answer.