AC = 3x + 3, BC = 12, and AB = x + 5. Find AC

As, We're given with,
AB = x + 5, BC = 12, AC = 3x + 3
By segment addition postulate,
⇒AB + BC = AC
⇒x + 5 + 12 = 3x + 3
⇒5 + 12 - 3 = 3x - x
⇒17 - 3 = 2x
⇒14 = 2x
⇒2x = 14
⇒ x = 14/2
⇒ x = 7
Now, finding the measure of AC,
⇒Measure of AC = 3x + 3
= 3(7)+ 3
= 3 × 7 + 3
= 21 + 3
= 24
∴ The measure of AC is 24 ...!
Answer:
AC = 24
Step-by-step explanation:
Collinear points all lie on the same line, so point A, B, and C are on one line.
So, Ab + BC = AC
AB + BC = AC
x + 5 + 12 = 3x + 3
x + 17 = 3x + 3
-3 -3
------------------------
x + 14 = 3x
-x -x
------------------------
14 = 2x
/2 /2
------------------------
7 = x
AC = 3x + 3
= 3 (7) + 3
= 21 + 3
= 24
AC = 24