A population of rabbits at time t increases at a rate of 40-12t+3t^2 rabbits per year where t is measured in years. Find the population after eight years if there are 10 rabbits at t=0?

Respuesta :

We have to find derivative of t

[tex]\\ \sf\longmapsto \dfrac{d}{dx}3t^2-12t+4[/tex]

[tex]\boxed{\sf \dfrac{d(x^n)}{dx}=nx^{n-1}}[/tex]

[tex]\\ \sf\longmapsto \dfrac{d}{dx}3t^2-\dfrac{d}{dx}12t+\dfrac{d}{dx}40[/tex]

[tex]\\ \sf\longmapsto 6t-12[/tex]

Now

  • t=8..

[tex]\\ \sf\longmapsto 6(8)-12[/tex]

[tex]\\ \sf\longmapsto 48-12[/tex]

[tex]\\ \sf\longmapsto 36[/tex]

ACCESS MORE
EDU ACCESS