Respuesta :

Hello there!

We are given the equation:

[tex] \displaystyle \large{jr + se = jb + f}[/tex]

We are going to isolate j. First, subtract both sides by jb.

[tex] \displaystyle \large{jr + se - jb = jb - jb+ f} \\ \displaystyle \large{jr + se - jb = f}[/tex]

Then subtract both sides by se to leave only jr and jb.

[tex] \displaystyle \large{jr + se - jb - se= f - se} \\ \displaystyle \large{jr - jb = f - se}[/tex]

For jr-jb, we can common factor out the j-term.

[tex] \displaystyle \large{j(r - b)= f - se}[/tex]

For r-b, treat it as one term. Then we divide both sides by r-b.

[tex] \displaystyle \large{ \frac{j(r - b)}{r - b} = \frac{f - se}{r - b} } \\ \displaystyle \large{ j= \frac{f - se}{r - b} }[/tex]

Hence, j = f - se / r - b

Alternate Solution

This is an alternate solution. We can simplify the fractional expression by separating each terms.

[tex] \displaystyle \large{ j= \frac{f - se}{r - b} } \\ \displaystyle \large{ j= \frac{f}{r - b} + \frac{ - se}{r - b} }[/tex]

Since se is in negative, we replace + as - and cancel -se to se.

[tex] \displaystyle \large{ j= \frac{f - se}{r - b} } \\ \displaystyle \large{ j= \frac{f}{r - b} - \frac{ se}{r - b} }[/tex]

The simplifed answer is j = ( f / r - b ) - ( se / r - b l

These two answers work and are correct.

Let me know if you have any questions!

Topic: Literal Equation (Factorization Involved)

RELAXING NOICE
Relax