Respuesta :
Answer:
c³ + 24c² + 192c + 512
Step-by-step explanation:
(c + 8)³
= (c + 8)(c + 8)(c + 8) ← expand last 2 factors using FOIL
= (c + 8)(c² + 16c + 64)
Multiply each term in the second factor by each term in the first factor
c(c² + 16c + 64) + 8(c² + 16c + 64) ← distribute parenthesis
= c³ + 16c² + 64c + 8c² + 128c + 512 ← collect like terms
= c³ + 24c² + 192c + 512
Answer:
[tex]c^{3} + 24 {c}^{2} + 192c + 512 [/tex]
Step-by-step explanation:
Expand the expression
[tex](c + 8)(c + 8)(c + 8) \\ = {c}^{3} + 3 {c}^{2} \times 8 + 3c \times {8}^{2} + {8}^{3} \\ = {c}^{3} + 24 {c}^{2} 3c \times 64 + 512 \\ = {c}^{3} + 24 {c}^{2} + 192c + 512[/tex]
