We have that the maximum induced emf,the maximum induced current, the induced emf and current as functions of time,The maximum torque must be applied to keep the coil turning are
a )[tex]E_{max}=135.6v[/tex]
b) [tex]I_max=11A[/tex]
c) [tex]I_i=11A sin(376.9rad/s t)[/tex]
[tex]E_i=135.6v sin(376.9rad/s )[/tex]
d) [tex]T=4.07Nm[/tex]
From the Question we are told that
Area [tex]A =9.0x 10^{-2} m^2[/tex]
Total resistance of [tex]R=12.0 V.[/tex]
Magnetic field of [tex]B=0.500 T[/tex]
Constant frequency [tex]F=60.0 Hz[/tex]
Eight turns [tex]N=8N[/tex]
A)
Generally the equation for the maximum induced emf is mathematically given as
[tex]E=NAB\omega[/tex]
Where
[tex]\omega=2\pi f[/tex]
[tex]\omega=2*3.142*60[/tex]
[tex]\omega=376.9rad/s[/tex]
[tex]E_max=8*(9.0x 10-2)*0.5*376.9[/tex]
[tex]E_{max}=135.6v[/tex]
B)
Generally the equation for the maximum induced Current is mathematically given as
[tex]I_m=\frac{E}{R}\\\\I_max=\frac{135.6}{12}\\\\I_max=11A[/tex]
C)
Generally for the induced emf and current as functions of time we Substitute [tex]E_{max}[/tex] and [tex]\omega[/tex] into
[tex]E_i=E_{max} sin\omega t[/tex]
[tex]E_i=135.6v sin(376.9rad/s t)[/tex]
And Same for induces Current
[tex]I_i=I_{max} sin\omega t[/tex]
[tex]I_i=11A sin(376.9rad/s t)[/tex]
D)
Generally the equation for the maximum torque is mathematically given as
[tex]T = rB sin θ[/tex]
Where
r= maximum magnetic moment
[tex]r=NIAr= 8*11.3*0.090r=8.14m^2[/tex]
Therefore
[tex]T = 8,14*0.500 sin 90[/tex]
[tex]T=4.07Nm[/tex]
For more information on this visit
https://brainly.com/question/23285250