Respuesta :
Answer:
see below
Step-by-step explanation:
To find the conjugate of a+bi take the opposite of bi so it would be a - bi
7-3i, the conjugate is 7 + 3i
8+2i the conjugate is 8 -2i
The product of a number and its conjugate is
(a+bi) (a-bi) = a^2 +abi-abi -b^2 i^2 = a^2 - b^2 (-1) = a^2 + b^2
( 4-i) ( 4+i) = 4^2 + 1^2 = 16+1 = 17
( 6+3i)(6-3i) = 6^2 + 3^2 = 36+9 = 45
#1
- z=7-3i
[tex]\\ \sf\longmapsto \overline{z}=7+3i[/tex]
#2
- z=8+2i
[tex]\\ \sf\longmapsto \overline{z}=8-2i[/tex]
#3
[tex]\boxed{\sf z\overline{z}=|z|^2}[/tex]
[tex]\\ \sf\longmapsto z=4-i[/tex]
[tex]\\ \sf\longmapsto |z|^2=4^2+(-1)^2[/tex]
[tex]\\ \sf\longmapsto 16+1=17[/tex]
#4
[tex]\\ \sf\longmapsto |z|^2[/tex]
[tex]\\ \sf\longmapsto 6^2+3^2[/tex]
[tex]\\ \sf\longmapsto 36+9[/tex]
[tex]\\ \sf\longmapsto 45[/tex]
Otras preguntas
