Write the sum as
[tex]\displaystyle S = \sum_{k=1}^n \frac1{k(k+2)}[/tex]
Decompose the summand into partial fractions; that is, we look for constants a and b such that
[tex]\dfrac 1{k(k+2)} = \dfrac ak + \dfrac b{k+2}[/tex]
Condense the right side into a single fraction and set the numerators on both sides equal to one another:
[tex]\dfrac1{k(k+2)} = \dfrac{a(k+2)}{k(k+2)} + \dfrac{bk}{k(k+2)} = \dfrac{a(k+2)+bk}{k(k+2)} \\\\ \implies 1 = a(k+2) + bk = (a+b)k + 2a[/tex]
Then a + b = 0 and 2a = 1, so it follows that a = 1/2 and b = -1/2.
We then see that S is a telescoping sum (intermediate terms cancel and the overall sum collapses into a small number of terms):
[tex]\displaystyle S = \frac12 \sum_{k=1}^n \left(\frac1k - \frac1{k+2}\right) \\\\ S = \frac12 \left(1-\frac13 + \frac12 - \frac14 + \frac13 - \frac15 + \cdots + \frac1{n-2} - \frac1n + \frac1{n-1} - \frac1{n+1} + \frac1n - \frac1{n+2}\right) \\\\ S = \frac12 \left(1 + \frac12 - \frac1{n+1} - \frac1{n+2}\right) \\\\ \boxed{S = \frac{n(3n+5)}{4(n+1)(n+2)}}[/tex]