Respuesta :
Answer:
[tex] \displaystyle - 3 \sqrt{5n} + 4 \sqrt{15} n[/tex]
Step-by-step explanation:
we would like to simplify the following expression:
[tex] \displaystyle \sqrt{15} ( - \sqrt{3n} + 4n)[/tex]
recall distribution property thus:
[tex] \displaystyle - \sqrt{3n} \sqrt{15} + 4n \sqrt{15} [/tex]
remember that,
- [tex] \displaystyle \sqrt{a} \sqrt{b} = \sqrt{ab} [/tex]
so assign variables:
- [tex]a \implies 3n[/tex]
- [tex]b \implies 15[/tex]
simplify Multiplication:
[tex] \displaystyle - \sqrt{45n} + 4 \sqrt{15} n[/tex]
rewrite 45 as 9×5:
[tex] \displaystyle - \sqrt{9 \times 5n} + 4 \sqrt{15} n[/tex]
utilize the formula:
[tex] \displaystyle - \sqrt{9 } \sqrt{5n} + 4 \sqrt{15} n[/tex]
simplify square:
[tex] \displaystyle \boxed{- 3 \sqrt{5n} + 4 \sqrt{15} n}[/tex]
and we're done!
Laws to be used:-
[tex]\boxed{\sf a(b+c)=ab+bc}[/tex]
[tex]\boxed{\sf \sqrt{p}\sqrt{q}=\sqrt{pq}}[/tex]
Solution
[tex]\\ \rm\longmapsto \sqrt{15}(-\sqrt{3n}+4n)[/tex]
[tex]\\ \rm\longmapsto -\sqrt{15}\sqrt{3n}+4\sqrt{15}n[/tex]
[tex]\\ \rm\longmapsto -\sqrt{3(15)n}+4\sqrt{15}n[/tex]
[tex]\\ \rm\longmapsto -\sqrt{3(3)(5)n}+4\sqrt{15}n[/tex]
[tex]\\ \rm\longmapsto -3\sqrt{5}n+4\sqrt{15n}[/tex]
Or we can break 15n
[tex]\\ \rm\longmapsto -3\sqrt{5}n+4\sqrt{3(5)n}[/tex]
[tex]\\ \rm\longmapsto -3\sqrt{5}n+4\sqrt{3}\sqrt{5n}[/tex]