Respuesta :

Answer:

(-11 , -16)

Step-by-step explanation:

The midpoint will always be, as the term suggests, in the middle of the line segment. You simply need to find the distance for both x & y, and to apply that to the midpoint. In this case:

Endpoint (x₁ , y₁): (5 , 10)

Midpoint (x₂ , y₂): (-3 , -3)

Note that when finding distance, you will subtract the point₂ from point₁:

x: 5 - (-3) = 8

y: 10 - (-3) = 13

Therefore, each time you plot another point, you will be subtracting 8 from the x value, and 13 from the y value:

Endpoint (x₃ , y₃) = Midpoint (-3 , -3) + (_ - 8 , _ - 13) = (-11 , -16)

(-11 , -16) is your answer.

~

  • Let other endpoint be (x2,y2)
  • One endpoint(5,10)
  • Midpoint(-3,-3)

Using midpoint formula

[tex]\boxed{\sf (x,y)=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}[/tex]

[tex]\\ \rm\longmapsto (-3,-3)=\left(\dfrac{5+x_2}{2},\dfrac{10+y_2}{2}\right)[/tex]

Firstly

[tex]\\ \rm\longmapsto \dfrac{5+x_2}{2}=-3[/tex]

[tex]\\ \rm\longmapsto 5+x_2=2(-3)=-6[/tex]

[tex]\\ \rm\longmapsto x_2=-6-5[/tex]

[tex]\\ \rm\longmapsto x_2=-11[/tex]

Now

.[tex]\\ \rm\longmapsto \dfrac{10+y_2}{2}=-3[/tex]

[tex]\\ \rm\longmapsto 10+y_2==2(-3)[/tex]

[tex]\\ \rm\longmapsto 10+y_2=-6[/tex]

[tex]\\ \rm\longmapsto y_2=-6-10[/tex]

[tex]\\ \rm\longmapsto y_2=-16[/tex]

Hence the coordinates are

  • (x2,y2=(-11,-16)
RELAXING NOICE
Relax