plz with steps plzzzzzz

Answer: [tex]-\frac{\sqrt{2a}}{8a}[/tex]
=======================================================
Explanation:
The (x-a) in the denominator causes a problem if we tried to simply directly substitute in x = a. This is because we get a division by zero error.
The trick often used for problems like this is to rationalize the numerator as shown in the steps below.
[tex]\displaystyle \lim_{x\to a} \frac{\sqrt{3a-x}-\sqrt{x+a}}{4(x-a)}\\\\\\\lim_{x\to a} \frac{(\sqrt{3a-x}-\sqrt{x+a})(\sqrt{3a-x}+\sqrt{x+a})}{4(x-a)(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\\lim_{x\to a} \frac{(\sqrt{3a-x})^2-(\sqrt{x+a})^2}{4(x-a)(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\\lim_{x\to a} \frac{3a-x-(x+a)}{4(x-a)(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\\lim_{x\to a} \frac{3a-x-x-a}{4(x-a)(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\[/tex]
[tex]\displaystyle \lim_{x\to a} \frac{2a-2x}{4(x-a)(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\\lim_{x\to a} \frac{-2(-a+x)}{4(x-a)(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\\lim_{x\to a} \frac{-2(x-a)}{4(x-a)(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\\lim_{x\to a} \frac{-2}{4(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\[/tex]
At this point, the (x-a) in the denominator has been canceled out. We can now plug in x = a to see what happens
[tex]\displaystyle L = \lim_{x\to a} \frac{-2}{4(\sqrt{3a-x}+\sqrt{x+a})}\\\\\\L = \frac{-2}{4(\sqrt{3a-a}+\sqrt{a+a})}\\\\\\L = \frac{-2}{4(\sqrt{2a}+\sqrt{2a})}\\\\\\L = \frac{-2}{4(2\sqrt{2a})}\\\\\\L = \frac{-2}{8\sqrt{2a}}\\\\\\L = \frac{-1}{4\sqrt{2a}}\\\\\\L = \frac{-1*\sqrt{2a}}{4\sqrt{2a}*\sqrt{2a}}\\\\\\L = \frac{-\sqrt{2a}}{4\sqrt{2a*2a}}\\\\\\L = \frac{-\sqrt{2a}}{4\sqrt{(2a)^2}}\\\\\\L = \frac{-\sqrt{2a}}{4*2a}\\\\\\L = -\frac{\sqrt{2a}}{8a}\\\\\\[/tex]
There's not much else to say from here since we don't know the value of 'a'. So we can stop here.
Therefore,
[tex]\displaystyle \lim_{x\to a} \frac{\sqrt{3a-x}-\sqrt{x+a}}{4(x-a)} = -\frac{\sqrt{2a}}{8a}\\\\\\[/tex]