Respuesta :

If a segment XZ joining two endpoints X[tex](x_1,y_1)[/tex] and Z[tex](x_2,y_2)[/tex] is divided by a point Y(x, y) externally in the ratio of m : n,

Coordinates of the point will be,

x - coordinates → [tex]\frac{mx_2-nx_1}{m-n}[/tex]

y - coordinates → [tex]\frac{my_2-ny_1}{m-n}[/tex]

If the coordinates of the endpoints X and Z are (1, 9) and (5, -11) respectively and the ratio in which a point Y divides the segment is 1 : 5,

(Since, XY : XZ = 1 : 4 therefore, XY : YZ = 1 : 5)

Therefore, coordinates of Y will be,

x- coordinates → [tex]\frac{1(5)-5(1)}{1-4}=0[/tex]

y-coordinates → [tex]\frac{1(-11)-5(9)}{1-5}=\frac{-56}{-4}=14[/tex]

Therefore, coordinates of Y will be [tex](0,14)[/tex].

Learn more.

https://brainly.com/question/13250941  

Ver imagen eudora
ACCESS MORE